Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum.
نویسندگان
چکیده
Sclerotinia sclerotiorum can initially suppress host oxidative burst to aid infection establishment, but later promotes reactive oxygen species (ROS) generation as proliferation advances. Here, it was shown that the cellular redox status can be modulated by thiamine to protect Arabidopsis thaliana against Sclerotinia at the early stages of infection. The initial inhibition of host ROS generation by Sclerotinia-secreted oxalate could effectively be alleviated by thiamine. Thiamine pre-treatment and subsequent wild-type Sclerotinia invasion induced an increase of ascorbate peroxidase activity concomitant with decreased ascorbate/dehydroascorbate ratios, which led to the cellular transition towards oxidative status in infected tissues. Particularly, it was observed that wild-type Sclerotinia, but not oxalate-deficient A2 mutant, could suppress the activity of NADPH oxidase (NOX), which might be an important mechanism underlying the early inhibition of ROS burst. Nevertheless, thiamine pre-treatment followed by wild-type Sclerotinia infection promoted NOX-derived ROS accumulation. Further studies showed that cytosolic Ca(2+) and staurosporine-sensitive protein kinase(s) participated in thiamine-induced activation of NOX. Moreover, thiamine-induced tissue defence responses including callose/lignin deposition and stomatal closure were closely correlated with NOX-derived ROS generation. Additionally, studies with Brassica species indicated that the regulation of thiamine is largely conserved upon Sclerotinia infection. Collectively, it was concluded that thiamine reverses the initial reducing status through activating NOX-dependent ROS signalling to perturb the disease progress of Sclerotinia.
منابع مشابه
Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection.
Oxalic acid is a virulence factor of several phytopathogenic fungi, including Sclerotinia sclerotiorum (Lib.) de Bary, but the detailed mechanisms by which oxalic acid affects host cells and tissues are not understood. We tested the hypothesis that oxalate induces foliar wilting during fungal infection by manipulating guard cells. Unlike uninfected leaves, stomatal pores of Vicia faba leaves in...
متن کاملArabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi.
Effective plant defense strategies rely in part on the perception of non-self determinants, so-called microbe-associated molecular patterns (MAMPs), by transmembrane pattern recognition receptors leading to MAMP-triggered immunity. Plant resistance against necrotrophic pathogens with a broad host range is complex and yet not well understood. Particularly, it is unclear if resistance to necrotro...
متن کاملGenome-Wide Identification of Dicer-Like, Argonaute, and RNA-Dependent RNA Polymerase Gene Families in Brassica Species and Functional Analyses of Their Arabidopsis Homologs in Resistance to Sclerotinia sclerotiorum
RNA silencing is an important mechanism to regulate gene expression and antiviral defense in plants. Nevertheless, RNA silencing machinery in the important oil crop Brassica napus and function in resistance to the devastating fungal pathogen Sclerotinia sclerotiorum are not well-understood. In this study, gene families of RNA silencing machinery in B. napus were identified and their role in res...
متن کاملA Secretory Protein of Necrotrophic Fungus Sclerotinia sclerotiorum That Suppresses Host Resistance
SSITL (SS1G_14133) of Sclerotinia sclerotiorum encodes a protein with 302 amino acid residues including a signal peptide, its secretion property was confirmed with immunolocalization and immunofluorescence techniques. SSITL was classified in the integrin alpha N-terminal domain superfamily, and its 3D structure is similar to those of human integrin α4-subunit and a fungal integrin-like protein....
متن کاملAdaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation
Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 64 11 شماره
صفحات -
تاریخ انتشار 2013